Abstract

One of the main goals of NMR method development is to increase the sensitivity of multidimensional NMR experiments or reduce the required acquisition time. In these experiments, more than 80% of the NMR instrument time is spent on the recycle delay, where the instrument idles to wait for the recovery of proton magnetization. In this study, we report a method of using paramagnetic relaxation effects to shorten the recycle delays required in multidimensional NMR experiments of biological macromolecules. This approach significantly reduces the NMR instrument time required. Ni(2+) ion, complexed with the chelating molecule DO2A, is used to decrease the proton T(1) relaxation time of biological macromolecules without the significant line-broadening effects that are associated with most paramagnetic ions. The Ni(DO2A) also significantly decreases the T(1) relaxation time of water, thus providing additional sensitivity gain by eliminating the saturation of labile amide resonances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.