Abstract

The present work concerns the operating principle and a thorough experimental characterization of a new polysilicon resonant micro accelerometer for out-of-plane measurements, fabricated using an industrial surface micromachining technique. This device is characterized by differential resonant sensing, obtained from the variation of the electrostatic stiffness of two torsional resonators under the application of an external acceleration. The sensitivity, defined as the differential shift in resonance frequencies per gravity unit (lg = 9.8 m s−2), is of about 10 Hz g−1when operated at a DC bias of 1.5 V only. Over an acceleration range larger than 10 g, the deviation from linearity is lower than 1% and the cross-axis rejection is larger than 34 dB. The resonators temperature coefficients of frequency, in the order of −29 ppm C−1, are matched within about 0.1%, resulting in linear offset drifts against temperature lower than 5 mg up to 95 C in absence of any digital compensation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.