Abstract
Interfacial area concentration measurement is quite important in gas-liquid two-phase flow. To determine the accuracy of measurement of the interfacial area using electrical resistivity probes, numerical simulations of a passing bubble through sensors are carried out. The two-sensors method, the four-sensors method and the correlative method are tested and the effects of sensor spacing, bubble diameter and hitting angle of the bubbles on the accuracy of each measurement method are investigated. The results indicated that the two-sensors method is insensitive to the ratio between sensor spacing and bubble diameter, and hitting angle. It overestimates the interfacial area for small hitting angles while it gives a reasonable accuracy for smaller bubbles and large hitting angles. The four-sensors method gives accurate interfacial area measurements particularly for the larger bubble diameters and smaller hitting angles, while for smaller bubbles and larger hitting angles, the escape probability of bubbles through the sensors becomes large and the accuracy becomes worse. The correlative method gives an overall accuracy for interfacial area measurement. Particularly, it gives accurate measurements for larger bubbles and larger hitting angles while for smaller hitting angles, the spatial dependence of the correlation functions affects the accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.