Abstract
This paper investigates the electrocatalytic oxidation of (-)-epigallocatechin gallate (EGCG), the main monomer flavanol found in green tea, with a novel ionic liquid, n-octylpyridinium hexafluorophosphate (OPFP) carbon paste electrode (CPE). Due to the natural viscosity and high conductivity of OPFP, this novel OPFP-CPE exhibited very attractive properties, such as high stability and electrochemical reactivity, low background current, and wide electrochemical window. Therefore, this electrode is a very good alternative to traditional chemically modified electrodes because the electrocatalytic effect can achieved without any further electrode modification. Comparative experiments were carried out using CPE and a glassy carbon electrode (GCE). With OPFP-CPE, highly reproducible and well-defined cyclic voltammograms were obtained for EGCG. Under optimal experimental conditions, the peak current of differential pulse voltammetry (DPV) response increased linearly with EGCG concentration over the range of 5.0 × 10(-7)-1.25 × 10(-5) M. The limit of detection (LOD) and the limit of quantification (LOQ) were 1.32 × 10(-7) and 4.35 × 10(-7) M, respectively. The method was applied to the determination of EGCG in green tea infusion samples, and the recovery of the spiked EGCG to the diluted (10-fold) tea extract was from 87.62 to 99.51%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.