Abstract
A novel sensing gap reconfigurable capacitive type MEMS accelerometer with high sensitivity and high resolution is designed, fabricated and characterized. The present MEMS accelerometer is fabricated by using simple SOI process-DRIE. However, conventional Silicon on Insulator (SOI) process is hard to make patterns which is smaller than 1 um because of its high aspect ratio and ICP etching error such as loading-effect and under-cutting. So we have adopted a simple idea of the MEMS actuator-stopper system to modulate the sensing gap precisely. Unlike previous capacitive type MEMS accelerometer which has an anchored reference comb electrodes, the proposed accelerometer has a movable reference comb with MEMS electrostatic actuators and stoppers. By simply applying DC bias to MEMS actuators, the reference comb electrode is moved to the sensing comb structure until the actuators contacting the stoppers. The gap between sensing comb fingers and reference comb fingers is reduced by the gap between actuators and stoppers. In this paper, the initial sensing gap is 1.5um and it reduced to 0.5um, when working. Then, the overall capacitance and sensitivity is simple increased. The capacitance is increased from 3.47pF at the OFF state to 5.35pF at the ON state by applying 2V DC bias.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.