Abstract

In this paper, using full vector modal field analysis, we present physical parameter sensing, e.g., temperature, axial strain, bulk refractive index, and affinity sensing characteristics of counterpropagating cladding modes in optical fibers. Counterpropagating cladding modes (HEmn) are considered to be excited by resonant power coupling from the fundamental core mode using a suitably designed fiber Bragg grating (FBG). We show that for such couplings, the bandwidths of reflection spectra are much smaller than those obtained for conventional core mode reflecting FBGs. Next, we also show that the reflection bandwidth increases linearly with increasing grating strength, whereas it decreases exponentially with increasing grating length. The reflection spectra of such FBGs, as a function of different ambient physical perturbation parameters, are obtained, and then the grating sensitivity corresponding to those parameters is established. Interestingly, we have noticed that despite having the same evanescent field in the analyte region, unlike the long-period grating assisted co-propagating cladding modes (HEmn), the same cladding modes while propagating counter to the core mode are weakly sensitive to changes in the ambient refractive index. The reason behind this observation is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.