Abstract

Simultaneously monitoring and quantifying intracellular multiple microRNAs (miRNAs) is highly essential to clinical diagnosis and pathological research. However, revealing the intracellular distribution of multiple miRNAs while determining their content in a multiplex and quantitative format remains challenging. Considering the respective technical merit of fluorescence imaging and mass spectrometry (MS) in in situ detection and multiplex assaying, we herein propose fluorophore/mass dual-encoded nanoprobes (FMNPs) that can execute target-triggered hairpin self-assembly to enable in situ amplified imaging and follow-up MS quantification of intracellular multiple miRNAs. The FMNPs responsive to the target miRNA were constructed by codecorating gold nanoparticles (AuNPs) with locked hairpin DNA probes (LH1) and corresponding mass tags (MTs) for fluorescent and mass spectrometric dual-modal readout. Cellular miRNAs can separately trigger recycled hairpin self-assembly, leading to the continuous liberation of fluorophore-labeled bolt DNA (bDNA) for fluorescence imaging in cells. Moreover, the postreaction FMNPs afford an extra chance to validate the fluorescence output of miRNA-21 and miRNA-141 by accurate MS quantification relying on the ion signal of the barcoded MTs. Fluorescence imaging and MS quantification of miRNA-21 and miRNA-141 have also been successfully accomplished in different cell lines, highlighting its potential in cell subtyping. This "sense-and-validate" strategy creates a new modality for assaying multiple intracellular miRNAs and holds great promise in unveiling multicomponent-involved events in cellular processes and determining multiple biomarkers in accurate clinical diagnosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.