Abstract

The histidine residue at the amino terminus of lysine-12 protected glucagon was replaced by its d-isomer by an established semisynthetic strategy to extend a stepwise series of replacements at this position. The product was examined for its secondary structure and its function. Circular dichroism spectra obtained at concentrations from 0.25 to 1.09 mg/ml at pH 10.2 in 0.2 m phosphate buffer were similar to those obtained with native hormone. Competitive binding assays and adenylate cyclase activation assays with partially purified rat liver plasma membranes show this d-His 1 analog of glucagon to be a full agonist, causing the same maximum activation of adenylate cyclase as native hormone; but both binding and activation assays show the binding affinity to be diminished about 10-fold. The data suggest that the adjustment of the bonding of the imidazole group to the receptor to bring about transduction results in constraints on the conformation along the peptide sequence which interfere with the peptide adopting the same binding conformation achieved by the native hormone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.