Abstract

We consider the standard optimistic bilevel optimization problem, in particular upper- and lower-level constraints can be coupled. By means of the lower-level value function, the problem is transformed into a single-level optimization problem with a penalization of the value function constraint. For treating the latter problem, we develop a framework that does not rely on the direct computation of the lower-level value function or its derivatives. For each penalty parameter, the framework leads to a semismooth system of equations. This allows us to extend the semismooth Newton method to bilevel optimization. Besides global convergence properties of the method, we focus on achieving local superlinear convergence to a solution of the semismooth system. To this end, we formulate an appropriate CD-regularity assumption and derive sufficient conditions so that it is fulfilled. Moreover, we develop conditions to guarantee that a solution of the semismooth system is a local solution of the bilevel optimization problem. Extensive numerical experiments on 124 examples of nonlinear bilevel optimization problems from the literature show that this approach exhibits a remarkable performance, where only a few penalty parameters need to be considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.