Abstract
We consider a semiparametric generalized linear model and study estimation of both marginal mean effects and marginal quantile effects in this model. We propose an approximate maximum likelihood estimator, and rigorously establish the consistency, the asymptotic normality, and the semiparametric efficiency of our method in both the marginal mean effect and the marginal quantile effect estimation. Simulation studies are conducted to illustrate the finite sample performance, and we apply the new tool to analyze a Swiss non-labor income data and discover a new interesting predictor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.