Abstract

Grillet (Semigroup Forum 50:25–36, 1995) introduced the concept of stratified semigroups as a kind of generalisation of finite nilsemigroups. We extend Grillet’s ideas by introducing the notion of the base of a semigroup and show that a semigroup is stratified if and only if its base is either empty or consists of only the zero element. The general structure of semigroups with non-trivial bases is studied and we show that these can be described in terms of ideal extensions of semigroups by stratified semigroups. We consider certain types of group-bound semigroups and also ideal extensions of Clifford semigroups, and show how to describe them as semilattices of ideal extensions by stratified semigroups and provide a number of interesting examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.