Abstract

Pressure-induced electrical transport properties of Bi2Se3, including Hall coefficient, carrier concentration, mobility, and electrical resistivity, have been investigated under pressure up to 29.8 GPa by in situ Hall-effect measurements. The results indicate that the structural and electronic phase transitions of Bi2Se3 induce discontinuous changes in these electrical parameters. The significant anomaly in Hall coefficient at 5 GPa reveals an electronic topological transition deriving from the topological change of the band extremum (Van Hove singularity). Additionally, electrical resistivity measurements under variable temperatures show that the insulating state of Bi2Se3 becomes increasingly stable with an increase of pressure below 9.7 GPa. But above 9.7 GPa, Bi2Se3 enters into a fully metallic state. As the metallization occurs, the topological property of Bi2Se3 disappears.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.