Abstract

Semiconductor lasers subject to external feedback are known to exhibit a wide variety of dynamical regimes desired for some applications such as chaos cryptography, random bit generation, and reservoir computing. Low-frequency fluctuations is one of the most frequently encountered regimes. It is characterized by a fast drop in laser intensity followed by a gradual recovery. The duration of this recovery process is irregular and of the order of hundred nanoseconds. The average time between dropouts is much larger than the laser system characteristic time-scales. Semiconductor ring lasers are currently the focus of a rapidly thriving research activity due to their unique feature of directional bistability. They can be employed in systems for all-optical switching, gating, wavelength-conversion functions, and all-optical memories. Semiconductor ring lasers do not require cleaved facets or gratings for optical feedback and are thus particularly suited for monolithic integration. We experimentally and numerically address the issue of low-frequency fluctuations considering a semiconductor ring laser in a feedback configuration where only one directional mode is re-injected into the same directional mode, a so-called single self-feedback. We have observed that the system is very sensitive to the feedback strength and the injection current. In particular, the power dropouts are more regular when the pump current is increased and become less frequent when the feedback strength is increased. In addition, we find two different recovery processes after the power dropouts of the low-frequency fluctuations. The recovery can either occur via pulses or in a stepwise manner. Since low-frequency fluctuations are not specific to semiconductor ring lasers, we expect these recovery processes to appear also in VCSELs and edge-emitting lasers under similar feedback conditions. The numerical simulations also capture these different behaviors, where the representation in the phase space of the carriers versus the round trip phase difference gives additional insight into these phenomena. This proceedings paper gives a short overview of the results of L. Mashal et al. [L. Mashal et al., IEEE J. Quantum. Electron. 49, 790, 2013].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.