Abstract

Semiconductor heterostructure SrTiO3/CeO2 (STO/CeO2) membrane was used as the electrolyte material of low-temperature solid oxide fuel cells. This STO/CeO2 membrane demonstrated a high ionic conductivity of 0.24 S cm−1 under fuel cell conditions at 550°C, and also its fuel cell delivered a maximum power output of 745.6 mW cm−2 at the same temperature. Moreover, the high electronic conductivity of CeO2 is blocked by the STO/CeO2 semiconductor heterojunction, thus resulting in the open circuit voltage increasing from 0.90 to 1.09 V at 550°C. The semiconductor heterointerface is found to play an important role in inhibiting the electron transfer between CeO2 particles. Thus, this work makes it feasibility of using semiconductor materials as the electrolyte by constructing heterojunctions to suppress the electronic conductivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.