Abstract

This paper presents a numerical model for the unsteady transport of a dopant during the VGF process by submerge d heater growth with a steady axial magnetic field and a steady radial electric current. Electromagnetic (EM) stirring can be induced in the gallium antimonide melt just above the crystal growth interface by applying a small radial electric current in the melt together with an axial magnetic field. The application of EM stirring provides a significant convective dopant transport in the melt so that the crystal solidifies with relatively good radial homogeneity. Dopant distributions in the crystal and in th e melt at several different stages during growth are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.