Abstract
We investigate the wave energy distribution in complex built-up structures with multiple interfaces at which the material properties change discontinuously. We formulate the transfer operator in such a way that it can in principle be made exact, and it is clear where the semiclassical approximations are made at each stage of the derivation. We reformulate the boundary integral equations for the Helmholtz equation in terms of incoming and outgoing boundary waves independently of the boundary conditions and decomposing the green functions into singular and regular components. For demonstration purposes, we apply a semiclassical form of the operator (corresponding to a high-frequency approximation) to polygonal coupled-cavity configurations with abrupt changes of the material properties (such as wave speed and absorption coefficients at the interfaces between the cavities).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Computational and Experimental Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.