Abstract

In this work the thermodynamic geometry (TG) of semiclassical fluids is analyzed. We present results for two models. The first one is a semiclassical hard-sphere (SCHS) fluid whose Helmholtz free energy is obtained from path-integral Monte Carlo simulations. It is found that, due to quantum contributions in the thermodynamic potential, the anomaly found in TG for the classical hard-sphere fluid related to the sign of the scalar curvature is now avoided in a considerable region of the thermodynamic space. The second model is a semiclassical square-well fluid, described by a SCHS repulsive interaction coupled with a classical attractive square-well contribution. The behavior of the semiclassical curvature scalar as a function of the thermal de Broglie wavelength λ_{B} is analyzed for several attractive-potential ranges. A description of the semiclassical R Widom lines, defined by the maxima of the curvature scalar, is also obtained and results are compared with the corresponding classical systems for different square-well ranges.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.