Abstract
We consider Schrodinger equations with variable coefficients, which are long-range type perturbations of the flat Laplacian on R n . We characterize the wave front set of solutions to Schrodinger equations in terms of the initial state. Then it is shown that the singularities propagates along the classical flow, and results are formulated in a semiclassical setting. Methods analogous to the long-range scattering theory, in particular a modified free propagator, are employed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.