Abstract
Chinese text classification problem was studied based on domain ontology graph (DOG) of semi-supervised conceptual clustering to solve the problem that English word disambiguation method cannot be applied to Chinese text classification. Structure model of domain ontology graph, text classification algorithm in HowNet dictionary and KLSeeker ontology and so on were used to realize accurate classification of Chinese text and display effectiveness of algorithm. Chinese text classification model in domain ontology graph based on conceptual clustering was developed from the angle of decreasing human participation in ontology construction as much as possible in the paper. Aimed at application domain of Chinese web text, the algorithm can generate DOG of knowledge conceptualization automatically. At the same time, document ontology graph (DocOG) was defined to represent contents of individual text document. DocOG extracting target realized text classification based on ontology by matching of single document ontology and domain ontology. Finally, example calculation analysis and actual data test set experiment were given in experimental stage. The result shows that proposed Chinese text classification method has higher classification accuracy and reflects effectiveness of design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.