Abstract

Increasing rockfall activity in the European Alps raises the need for designing systems protecting Alpine infrastructure. So far, layout of rockfall protection layers was carried out in a quasi-deterministic manner. This paper is concerned with the extension towards a semi-probabilistic design of the thickness of gravel layers covering steel pipelines. Quantities with little scatter such as geometric dimensions and elasto-plastic material constants of steel and gravel are treated as deterministic. By contrast, strongly scattering quantities such as the indentation resistance of gravel, R, and rockfall characteristics including boulder mass m and height of fall h f are considered as probabilistic variables. While 5 and 95% quantiles of R (obtained from statistical evaluation of a series of real-scale impact tests onto gravel) represent probability-based interval bounds for designing the gravel layer thickness, the lack of statistical data from rare rockfall events motivates to follow the philosophy of EUROCODE 1, i.e., to define a design rockfall: m = 10,500 kg and h f = 80 m. Based on this input, a standard burying depth of steel pipelines (H = 1 m) is assessed, by comparing estimates of (i) boulder penetration depth into gravel and of (ii) the maximum impact force, respectively, with corresponding quantities related to a suitable real-scale impact test. This comparison shows the need to increase the height of the gravel overburden. In order to prove that a gravel layer thickness H = 2.7 m is sufficient to prevent the pipeline from inelastic deformations when the structure is hit by the design rockfall, several structural analyses with different values for R are carried out. This is done by means of a validated Finite Element model. As a by-product of the proposed semi-probabilistic design procedure, three different deformation modes of the hit pipeline are identified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.