Abstract
Poly(ethylene glycol monomethyl ether acrylate) (PEGMEA) was synthesized from the reaction of poly(ethylene glycol monomethyl ether) (PEGME) with acryloyl chloride. Semi-IPNs based on various weight ratios of diglycidyl ether of bisphenol A (DGEBA)/PEGMEA were prepared, using isophronediamine (IPDA) and 2,2′-azo-bis(isobutyronitrile) (AIBN) as curing agents. The glass transition temperature and exothermic peak shifts were studied with differential scanning calorimetry (DSC). Viscosity changes during semi-IPN formation were measured with a Brookfield viscometer. Dynamic mechanical properties were investigated by rheometric dynamic spectroscopy (RDS). Stress–strain curves were obtained with an Instron tensile tester, while impact resistance was measured with a computer aided falling dart impact tester. Experimental results revealed retarded curing rates for all semi-IPNs, as evidenced from the shifts of curing exothermic peaks to higher temperatures, together with retarded viscosity increases during semi-IPN formation. These phenomena were interpreted in terms of chain entanglement between epoxy and PEGMEA. Nevertheless, the semi-IPNs indicated good compatibility as inferred from a single Tg in DSC and a single damping peak in RDS for each semi-IPN. Improved tensile stress and strain along with toughness improvements were noticed for this semi-IPN system. Shear band yielding was proposed to interpret this result. © 1999 Society of Chemical Industry
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.