Abstract

Circulating tumor cells (CTCs) derived from the primary tumor are shed into the bloodstream or lymphatic system. These rare cells (1-10 cells per mL of blood) warrant a poor prognosis and are correlated with shorter overall survival in several cancers (e.g., breast, prostate and colorectal). Currently, the anti-EpCAM-coated magnetic bead-based CTC capturing system is the gold standard test approved by the U.S. Food and Drug Administration (FDA) for enumerating CTCs in the bloodstream. This test is based on the use of magnetic beads coated with anti-EpCAM markers, which specifically target epithelial cancer cells. Many studies have illustrated that EpCAM is not the optimal marker for CTC detection. Indeed, CTCs are a heterogeneous subpopulation of cancer cells and are able to undergo an epithelial-to-mesenchymal transition (EMT) associated with metastatic proliferation and invasion. These CTCs are able to reduce the expression of cell surface epithelial marker EpCAM, while increasing mesenchymal markers such as vimentin. To address this technical hurdle, other isolation methods based on physical properties of CTCs have been developed. Microfluidic technologies enable a label-free approach to CTC enrichment from whole blood samples. The spiral microfluidic technology uses the inertial and Dean drag forces with continuous flow in curved channels generated within a spiral microfluidic chip. The cells are separated based on the differences in size and plasticity between normal blood cells and tumoral cells. This protocol details the different steps to characterize the programmed death-ligand 1 (PD-L1) expression of CTCs, combining a spiral microfluidic device with customizable immunofluorescence (IF) marker set.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.