Abstract
Development of automatic disease detection and classification system is significantly explored in precision agriculture. In the past few decades, researchers have studied several cultures exploiting different parts of a plant. A similar study is performed for Soybean using leaf images. A rule based semi-automatic system using concepts of k -means is designed and implemented to distinguish healthy leaves from diseased leaves. In addition, a diseased leaf is classified into one of the three categories ( downy mildew , frog eye , and Septoria leaf blight ). Experiments are performed by separately utilising colour features, texture features, and their combinations to train three models based on support vector machine classifier. Results are generated using thousands of images collected from PlantVillage dataset. Acceptable average accuracy values are reported for all the considered combinations which are also found to be better than existing ones. This study also attempts to discover the best performing feature set for leaf disease detection in Soybean. The system is shown to efficiently compute the disease severity as well. Visual examination of leaf samples further proves the suitability of the proposed system for detection, classification, and severity calculation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.