Abstract

In this research work, semi-analytical method (SAM) is presented to predict composite creep strain rate and quasi shear-lag (QSL) formulation directly, as well as, finite element method (FEM) is employed for predicting partial creep debonding at the interface in steady state creep of short fiber composites under tensile axial stress. Also, new formulation QSL is introduced to obtain the average axial stress in fiber which its results are similar to the results of shear lag (SL) model. Then, it is shown that FEM can approximately predict the partial debonding in some regions of the interface. As a result, interfacial debonding can be caused by high tensile axial and circumferential stresses, high shear and equivalent stresses, and low compressive radial stresses with considering stress concentration. The results obtained from SAM are in good agreement with the available experimental results. Finally, it is concluded that FEM simulation can be useful for predicting some defects such as interfacial debonding and also better designing the fibrous composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.