Abstract

In this paper, we formally prove that padding the plaintext with a random bit-string provides the semantic security against chosen plaintext attack (IND-CPA) for the McEliece (and its dual, the Niederreiter) cryptosystems under the standard assumptions. Such padding has recently been used by Suzuki, Kobara and Imai in the context of RFID security. Our proof relies on the technical result by Katz and Shin from Eurocrypt '05 showing "pseudorandomness" implied by the learning parity with noise (LPN) problem. We do not need the random oracles as opposed to the known generic constructions which, on the other hand, provide a stronger protection as compared to our scheme--against (adaptive) chosen ciphertext attack, i.e., IND-CCA(2). In order to show that the padded version of the cryptosystem remains practical, we provide some estimates for suitable key sizes together with corresponding workload required for successful attack.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.