Abstract
A temperature control solution is proposed in this paper, which uses a self-tuning PID controller based on flexible neural network (FNN). The learning algorithm of FNN can adjust not only the connection weights but also the sigmoid function parameters. This makes FNN characterized with online learning and high learning speed. The FNN has the following advantages when applied to temperature control problems: high learning ability, which considerably reduces the controller training time; the mathematical model of the plant is not required, which eases the design process; high control performance. These advantages are verified by its application to a practical temperature controlled box, which is used in medicinal inspection. The proposed system presents better behavior than that when using traditional back-propagation neural network.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.