Abstract

The dynamical self-trapping of an excitation propagating on one-dimensional of different sizes with next-nearest neighbor (NNN) interaction is studied by means of an explicit fourth order symplectic integrator. Using localized initial conditions, the time-averaged occupation probability of the initial site is investigated which is a function of the degree of nonlinearity and the linear coupling strengths. The self-trapping transition occurs at larger values of the nonlinearity parameter as the NNN coupling strength of the lattice increases for fixed size. Furthermore, given NNN coupling strength, the self-trapping properties for different sizes are considered which are some different from the case with general nearest neighbor (NN) interaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.