Abstract

Low cost and highly efficient bifuctional catalysts for overall water electrolysis have drawn considerable interests over the past several decades. Here, rationally synthesized mesoporous nanorods of nickel-cobalt-iron-sulfur-phosphorus composites are tightly self-supported on Ni foam as a high-performance, low cost, and stable bifunctional electrocatalyst for water electrolysis. The targeted designing and rational fabrication give rise to the nanorod-like morphology with large surface area and excellent conductivity. The NiCoFe-PS nanorod/NF can reach 10 mA cm-2 at a small overpotential of 195 mV with a Tafel slope of 40.3 mV dec-1 for the oxygen evolution reaction and 97.8 mV with 51.8 mV dec-1 for the hydrogen evolution reaction. Thus, this bifunctional catalyst shows low potentials of 1.52 and 1.76 V at 10 and 50 mA cm-2 toward overall water splitting with excellent stability for over 200 h, which are superior to most non-noble metal-based bifunctional electrocatalysts recently. This work provides a new strategy to fabricate multiple metal-P/S composites with the mesoporous nanorod-like structure as bifunctional catalysts for overall water splitting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.