Abstract

Self-learning Monte Carlo method [arXiv:1610.03137, 1611.09364] is a powerful general-purpose numerical method recently introduced to simulate many-body systems. In this work, we implement this method in the framework of determinantal quantum Monte Carlo simulation of interacting fermion systems. Guided by a self-learned bosonic effective action, our method uses a cumulative update [arXiv:1611.09364] algorithm to sample auxiliary field configurations quickly and efficiently. We demonstrate that self-learning determinantal Monte Carlo method can reduce the auto-correlation time to as short as one near a critical point, leading to $\mathcal{O}(N)$-fold speedup. This enables to simulate interacting fermion system on a $100\times 100$ lattice for the first time, and obtain critical exponents with high accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.