Abstract

The main purpose of this work is to define planar self-intersection local time by an alternative approach which is based on an almost sure pathwise approximation of planar Brownian motion by simple, symmetric random walks. As a result, Brownian self-intersection local time is obtained as an almost sure limit of local averages of simple random walk self-intersection local times. An important tool is a discrete version of the Tanaka--Rosen--Yor formula; the continuous version of the formula is obtained as an almost sure limit of the discrete version. The author hopes that this approach to self-intersection local time is more transparent and elementary than other existing ones.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.