Abstract

Two new thermoresponsive self‐healing polyurethanes (1DA1T and 1.5DA1T) based on the Diels–Alder (DA) reaction between furan and maleimide moieties are developed that use the shape‐memory effect to bring crack faces into intimate contact such that healing can take place. Unlike other self‐healing polymers, these polymers do not require external forces to close cracks but rather they use the shape‐memory effect to autonomously close the crack. Both polyurethanes have a stable polymer structure and comparable mechanical properties to commercial epoxies. A differential scanning calorimeter is employed to check the glass transition temperature of the polymers as well as the DA and retro‐DA (rDA) reaction temperatures. These DA and rDA reactions are confirmed with variable‐temperature proton nuclear magnetic resonance. Healing efficiency is calculated using a measurement of the failure load from compact tension testing. The results show that the shape‐memory effect can replace external forces to close two crack surfaces and the DA reaction can be repeatedly employed to heal the cracks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.