Abstract

Abstract In this paper, we experimentally investigate the thermoacoustic instability issue in an annular combustor with 16 oblique-injecting premixed swirling burners. It is demonstrated that there exist three dominant modes in a narrow operating range: a Helmholtz mode, a first-order azimuthal mode, and a second-order azimuthal mode. Their modal frequencies are consistent with the simulating prediction of a Helmholtz solver. Our present investigations are more focused on the second-order azimuthal modes which are comparatively infrequently observed in the experiments of model annular combustors. The dynamic mode decomposition approach is used to postprocess the high-speed flame images, revealing the primary dynamic structure of the flame responses for the three self-excited thermoacoustic modes. A pressure field analyzing ansatz has been involved to feature the self-excited azimuthal instabilities, including their dynamical nature (standing, spinning, or mixed) and the time-varying pressure antinodes. Results indicate that the first-order and second-order azimuthal modes both exhibit a standing nature with relatively fixed pressure antinodes. Additionally, in a transition case where these two azimuthal modes co-exist, the first-order azimuthal mode behaves as a weakly oscillating standing mode whose pressure antinodes exhibit a fat-tailed distribution. Exceptionally, the second-order azimuthal mode is split into a pair of nondegenerate modes with two close frequencies. And the split pairs are found to yield distinct pressure antinodes that are orthogonal to each other.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.