Abstract

In the present paper, the influence of self-diffusion of vibrationally excited states on the fluid dynamics and surface heat transfer in an axisymmetric Mach 7.2 air flow past a sphere-cone is discussed. Two models for state-to-state transport properties are considered: a simplified model using the Eucken’s relation for thermal conductivity and Fick’s law for diffusion velocities with the constant Lewis number, and a rigorous kinetic theory based model for the calculation of state-specific thermal conductivity, diffusion and thermal diffusion coefficients. The simplified model is applied for the flowfield simulation to avoid high computational costs. For the application of the accurate kinetic theory approach, a post-processing procedure is used. Inclusion of self-diffusion results in an increase in the surface heat flux of up to 6.5% upstream of a shoulder region. Thermal conductivity is found to be the primary contributor to surface heat flux; the influence of mass and thermal diffusion is found to be n...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.