Abstract

Self-consistent methods for the structure of heavy and superheavy nuclei are reviewed. The construction and application of energy-density functionals are discussed. The relationship between the self-consistent methods and microscopic-macroscopic approaches is considered on the mean-field level. The extraction of single-particle potentials from the energy-density functional is described. The isotopic dependence of nucleon distributions and its influence on the nucleus–nucleus interaction is analyzed. As a new additional condition we introduce that the energy-density functional must describe the heights of the Coulomb barriers in nucleus–nucleus interaction potentials, thus imposing constraints on the properties of the functional at low matter densities. The self-consistent methods are applied to describe the quasiparticle structure, cluster radioactivity, and fission of the heaviest nuclei. These methods are used to predict the probabilities of \(\beta \)-delayed multi-neutron emission and half-lives of \(\beta \)-decays and electron captures in heavy and superheavy nuclei. The predicted properties of superheavy nuclei are used to estimate the production cross-sections of superheavy nuclei in complete fusion reactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.