Abstract

Self-consistent field theory is applied to a film of cylindrical-forming block copolymer subject to a surface field which tends to align the cylinders parallel to electrical plates, and to an external electric field tending to align them perpendicular to the plates. The Maxwell equations and self-consistent field equations are solved exactly, numerically, in real space. By comparing the free energies of different configurations, we show that for weak surface fields, the phase of cylinders parallel to the plates makes a direct transition to a phase in which the cylinders are aligned with the field throughout the sample. For stronger surface fields, there is an intermediate phase in which cylinders in the interior of the film, aligned with the field, terminate near the plates. For surface fields which favor the minority block, there is a boundary layer of hexagonal symmetry at the plates in which the monomers favored by the surface field occupy a larger area than they would if the cylinders extended to the surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.