Abstract

The equations for the self-consistent π- and Δ-propagation in nuclear matter are solved numerically in the quasi-particle approximation. We have taken into account the full complexity of nucleon recoil and Fermi motion as well as the effects of binding and short-range correlations. Because of the much smoother behaviour of the self-consistent π and Δ self-energies it turns out that the quasi-particle approximation is still a good one even at normal nuclear density, whereas for k F ⩾ 1 fm −1 the first-order solution displays a multiple eigenmode propagation for the pion in the resonance region. The self-consistent π- and Δ-dispersion relations in the medium are then obtained for increasing densities by an iterative procedure which takes as a starting point, each time, the final result at the preceding density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.