Abstract

When cannabidiol (CBD) was incubated with hepatic microsomes of mice in the presence of an NADPH-generating system, a significant decrease of cytochrome P-450 content was observed by measuring its carbon monoxide difference spectra. The decrease of cytochrome P-450 by CBD required NADPH and molecular oxygen. The effect was partially inhibited by SKF 525-A but not by various scavengers of active oxygen species, superoxide anion, hydroxyl radical and singlet oxygen. The incubation of CBD with hepatic microsomes did not affect total heme but decreased significantly free sulfhydryl contents in the microsomes. The derivatives of CBD modified in the resorcinol moiety, CBD-monomethyl- and dimethylethers, almost lost the effect on cytochrome P-450, whereas those modified in the terpene moiety, 8,9-dihydro- and 1,2,8,9-tetrahydro-CBDs exhibited some potency to inactivate cytochrome P-450. The inactivation of cytochrome P-450 by CBD and related compounds led to the inhibition of hepatic microsomal P-nitroanisole O-demethylase and aniline hydroxylase activities. These results suggest that the resorcinol moiety of CBD plays some role in the inactivation of cytochrome P-450 by the cannabinoid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.