Abstract
This study introduces a Self-Attention (SA) Generative Adversarial Network (GAN) framework that applies artificial intelligence techniques to microwave sensing for electromagnetic imaging. The approach involves illuminating anisotropic objects using Transverse Magnetic (TM) and Transverse Electric (TE) electromagnetic waves, while sensing antennas collecting the scattered field data. To simplify the training process, a Back Propagation Scheme (BPS) is employed initially to calculate the preliminary permittivity distribution, which is then fed into the GAN with SA for image reconstruction. The proposed GAN with SA offers superior performance and higher resolution compared with GAN, along with enhanced generalization capability. The methodology consists of two main steps. First, TM waves are used to estimate the initial permittivity distribution along the z-direction using BPS. Second, TE waves estimate the x- and y-direction permittivity distribution. The estimated permittivity values are used as inputs to train the GAN with SA. In our study, we add 5% and 20% noise to compare the performance of the GAN with and without SA. Numerical results indicate that the GAN with SA demonstrates higher efficiency and resolution, as well as better generalization capability. Our innovation lies in the successful reconstruction of various uniaxial objects using a generator integrated with a self-attention mechanism, achieving reduced computational time and real-time imaging.
Published Version
Join us for a 30 min session where you can share your feedback and ask us any queries you have