Abstract

Well-ordered two-dimensional functional nanostructure arrays have a broad range of potential applications in molecular electronics, ultra-high density data storage, biosensors, single-electron, single-photon and quantum computation devices. Various surface nanotemplates that are naturally or artificially patterned at the nanometre scale have been used to guide the formation of highly periodic nanostructure arrays. In this paper, we review recent progress in the development of various surface nanotemplates as well as the self-assembly of nanostructures on them, with particular emphasis on the unique SiC nanomesh template. The formation mechanism of this nanomesh template is attributed to the self-assembly of accumulated carbon atoms into well-ordered honeycomb superstructures at the nanometre scale on the 6H–SiC(0 0 0 1) surface. The size and spacing of unit cells of the SiC nanomesh can be tailored in the 2–2.5 nm range by adjusting the annealing time. This nanomesh is demonstrated to be an effective template for the formation of well-ordered molecular arrays of copper(II) phthalocyanine (CuPc). The growth of C60 on the nanomesh follows a typical Stranski–Krastanov mode, and a complete C60 wetting monolayer can be epitaxially grown on this nanotemplate. It is effective in isolating metal nanoclusters, resulting in the formation of monodispersed Co nanoclusters with a narrow size distribution. The adsorption and desorption of Co nanoclusters and C60 do not change its atomic structure, making it a chemically and thermally stable nanotemplate for the formation of well-ordered nanostructures arrays as well as monodispersed metal nanoclusters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.