Abstract

Three-dimensional photonic crystal sensors are attractive platforms for autonomous chemical sensing and colorimetric bioassays. At present, the photonic crystal sensors with inverse opal structure were extensively studied, which swells or shrinks in response to the analytes. However, the fabrication of inverse opal sensors still remains a major challenge. Herein, we propose a simple and versatile approach to fabricate 3D opal photonic sensors. This photonic crystal is fabricated via assembly of monodispersed silica particles grafted with linear polymeric ligands (SiO2@LPs). Acrylic acid (negatively charged monomer) and N-tert-butylacrylamide (hydrophobic monomer) were incorporated with N-isopropylacrylamide to achieve strong affinity between the designed polymer ligands and proteins. The proposed photonic crystal displays a maximum redshift of 23nm in response to 2mg/mL lysozyme, accompanied by the structure color change from blue to green. Compared to the cross-linked polymers, the linear polymer with flexible structure allows the colloidal array to recognize lysozyme with higher sensitivity (as low as 5μg/mL) and broader linearity (from 5 to 2000μg/mL in aqueous media). In the future, this photonic crystal sensor can be used as universal tools for the detection of a broad range of analytes. Graphical abstract Colloidal array self-assembled by polymer brush-grafted silica for proteins detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.