Abstract

The self-assembly process provides an effective and environmentally benign method for synthesizing novel ceramic and composite materials. Three different approaches are discussed in this article: (1) self-assembly of colloidal crystals, (2) self-assembled monolayers, and (3) three-dimensional self-assembly with amphiphilic molecules. The self-assembly of colloidal crystals allows the synthesis of periodic optical devices and quantum dots from simple monodispersed particles. Self-assembled monolayers provide a molecular template to control the nucleation and growth of ceramic thin films. The emphasis of this paper will be on the self-assembly process with amphiphilic molecules, which represents the latest breakthrough in the design and synthesis of tailored nanoscale materials and composites. In the past few years, self-assembled materials have become a very active research area. This article illustrates how the basic principles of self-assembly can be applied in the synthesis of ceramic materials and discusses the role of various inter-molecular and into-particular forces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.