Abstract
We study the interplay between phase separation and self-assembly in chains, rings, and branched structures in a model of particles with dissimilar patches. We extend Wertheim's first order perturbation theory to include the effects of ring formation and to theoretically investigate the thermodynamics of the model. We find a peculiar shape for the vapor-liquid coexistence, featuring reentrant behavior in both phases and two critical points, despite the single-component nature of the system. The emergence of the lower critical point is caused by the self-assembly of rings taking place in the vapor, generating a phase with lower energy and lower entropy than the liquid. Monte Carlo simulations of the same model fully support these unconventional theoretical predictions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.