Abstract

Single-layer graphene oxide (SLGO) is emerging as a new-generation membrane material for high-flux, high-selectivity water purification, owing to its favorable two-dimensional morphology that allows facile fabrication of ultrathin membranes with subnanometer interlayer channels. However, reliable and precise molecular sieving performance still necessarily depends on thick graphene oxide (GO) deposition that usually leads to low water flux. This trade-off between selectivity and flux significantly impedes the development of ultrathin GO membranes. In this work, we demonstrate that the selectivity/flux trade-off can be broken by self-assembly of SLGO via simple deposition rate control. We find GO membranes, prepared by slow deposition of SLGO flakes, exhibit considerably improved salt rejection, while counterintuitively having 2.5-4 times higher water flux than that of membranes prepared by fast deposition. This finding has extensive implications of designing/tuning interlayer nanostructure of ultrathin GO membranes by simply controlling SLGO deposition rate and thus may greatly facilitate their development for high flux, high selectivity water purification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.