Abstract
The adsorption and self-assembly of surfactants are ubiquitous processes in several technological applications, including the manufacture of nano-structured materials using bottom-up strategies. Although much is known about the adsorption of surfactants on homogeneous flat surfaces from experiments, theory, and simulations, limited information is available, in quantifiable terms, regarding the adsorption of surfactants on surfaces with chemical and/or morphological heterogeneity. In an effort to fill this knowledge gap, we report here results obtained using equilibrium dissipative particle dynamics (DPD) simulations for the adsorption of model surfactants onto patterned flat surfaces (i.e., flat surfaces with chemical heterogeneity). The patterns consist of one or two stripes of variable width on which the surfactants could adsorb. The adsorbing stripes are surrounded by a surface that effectively repels the surfactants. This repelling surface, perhaps not realistic, allows us to quantify the effect of lateral confinement on the morphology of surfactant aggregates. When the stripe width is large (effectively providing a homogeneous flat surface), the surfactants yield a flat monolayer. Our simulations suggest that the flat monolayers become hemi-cylinders, hemi-spheres, and individual surfactants as the stripe width decreases, a consequence of lateral confinement. In some cases our simulations show evidence of cooperative effects when two adsorbing stripes are present on the surface. If the distance between the stripes and the widths of the stripes are both less than about one surfactant length, hemi-cylindrical shells and irregular structures are observed because of cooperativity; otherwise the results match those found for a single isolated stripe. Our predictions could be useful for the design of new nano-structured materials and coatings, for applications ranging from nano-fluidic devices to nano-reactors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.