Abstract

Hierarchical carbon/g-C3N4 composites consisting of nanosheets are synthesized by a direct thermal diffusion and exfoliation approach with glucose acting as the intercalator and carbon source. This facile protocol not only renders nanosheets with a large surface area, but also carbon intercalation into the interlayer of g-C3N4. Therefore, the synthesized carbon/g-C3N4 composites exhibit superior photocatalytic performance for degrading representative methylene blue (MB) under visible light irradiatuon. Carbon/g-C3N4 composites with an optimal glucose mass ratio of 0.25% show the apparent reaction rate constant of 0.253 h−1, which is 9 times higher than that over bluk g-C3N4. The superior photocatalytic performance of carbon/g-C3N4 hierarchical architectures can be attributed to the synergic effects of large reactive sites, effective visible light adsorption and faster charge transfer owing to the superior electron transfer ability of carbon as verified by the PL and photoelectrochemical measurements. The main reactive species responsible for the photocatalytic degradation are photoinduced holes and ·OH radicals under visible light irradiation. This work provides a facile way to fabricate effecient g-C3N4-based photocatalysts for the potential application in dealing with environmental and energy shortage issues using solar energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.