Abstract

Non-parametric probability density function (pdf) estimation is a general problem encountered in many fields. A promising alternative to the dominating solutions, kernel density estimation (KDE) and Gaussian mixture modeling, is adaptive KDE where kernels are given individual bandwidths adjusted to the local data density. Traditionally the bandwidths are selected by a non-linear transformation of a pilot pdf estimate, containing parameters controlling the scaling, but identifying parameters values yielding competitive performance has turned out to be non-trivial.We present a new self-tuning (parameter free) pdf estimation method called adaptive density estimation by Bayesian averaging (ADEBA) that approximates pdf estimates in the form of weighted model averages across all possible parameter values, weighted by their Bayesian posterior calculated from the data.ADEBA is shown to be simple, robust, competitive in comparison to the current practice, and easily generalize to multivariate distributions. An implementation of the method for R is publicly available.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.