Abstract

In this paper, a decentralized fault tolerant control (DFTC) scheme is proposed for a class of large-scale nonlinear systems based on self-tuned local feedback gain against partial loss of actuator effectiveness (PLOAE). Consider a large-scale nonlinear system as a set of interconnected subsystems, a decentralized control method is proposed by employing two radial basis function neural networks (RBFNNs) for the fault-free system. Then, the unknown system is identified using RBFNNs. By establishing a decentralized observer, the derived self-tuned local feedback gain is placed before the proposed decentralized controller to guarantee control performance for the subsystem suffering from PLOAE fault. Finally, simulation examples are provided to demonstrate the effectiveness of the present DFTC scheme. The main contributions of this paper are: i) The unknown large-scale nonlinear system can be identified using locally measured states, so the actuator fault can be handled in its local subsystem. It implies that the performance degradation of the faulty subsystem cannot affect the fault-free subsystems. ii) The estimated effectiveness factor is placed before the proposed decentralized scheme. The fault tolerant control structure is simple since it does not need to be redesigned in the case of PLOAE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.