Abstract

This paper studies the problem of stabilizing a self-triggered control system with quantized output. Employing a standard observer-based state feedback control law, a self-triggering mechanism that dictates the next sampling time based on quantized output is co-developed with an output encoding scheme. If, in addition, the transmission protocols at the controller-to-actuator (C–A) and sensor-to-controller (S–C) channels can be adapted, the self-triggered control architecture can be considerably simplified, leveraging a delicate observer-based deadbeat controller to eliminate the need for running the controller in parallel at the encoder side. To account for denial-of-service (DoS) in the S–C channel, the proposed output encoding and self-triggered control schemes are further made resilient. It is shown that a linear time-invariant system can be exponentially stabilized if some conditions on the average DoS duration time are met. There is a trade-off between the maximum inter-sampling time and the resilience against DoS attacks. Finally, a numerical example is presented to demonstrate the practical merits of the proposed self-triggered control schemes and associated theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.