Abstract

The transition from Tayor vortex flow to wavy-vortex flow is revisited. The Self-Sustaining Process (SSP) of Waleffe [Phys. Fluids 9, 883-900 (1997)] proposes that a key ingredient in transition to turbulence in wall-bounded shear flows is a three-step process involving rolls advecting streamwise velocity, leading to streaks which become unstable to a wavy perturbation whose nonlinear interaction with itself feeds the rolls. We investigate this process in Taylor-Couette flow. The instability of Taylor-vortex flow to wavy-vortex flow, a process which is the inspiration for the second phase of the SSP, is shown to be caused by the streaks, with the rolls playing a negligible role, as predicted by Jones [J. Fluid Mech. 157, 135-162 (1985)] and demonstrated by Martinand et al. [Phys. Fluids 26, 094102 (2014)]. In the third phase of the SSP, the nonlinear interaction of the waves with themselves reinforces the rolls. We show this both quantitatively and qualitatively, identifying physical regions in which this reinforcement is strongest, and also demonstrate that this nonlinear interaction depletes the streaks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.