Abstract

This paper proposes a new simultaneous terahertz (THz) information and power transfer (STIPT) system, which utilizes a reconfigurable intelligent surface (RIS) for both the data and power transmission. We aim to maximize the information users’ (IUs’) sum data rate while guaranteeing the power harvesting requirements of energy users (EUs) and RIS. To solve the formulated non-convex problem, the block coordinate descent (BCD) based algorithm is adopted to alternately optimize the transmit precoding of IUs, RIS’s reflecting coefficients, and the position of RIS. Additionally, the penalty constrained convex approximation (PCCA) algorithm is proposed to optimize the deployment of the RIS, where the introduced penalties ensure that the solution is always feasible. The simulation results show that the proposed solution outperforms the benchmark schemes, and the proposed BCD algorithm can greatly improve the performance of the STIPT system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.